
Localization
The word “glyph” has five glyphs and four phonemes. A “phoneme” is the smallest

difference in sound that can change a word’s meaning. For example, f is softer than ph, so flip
has a meaning different than … you get the idea.

“Ligatures” are links between two glyphs, such as fl, with a link at the top. “Accented”

characters, like ā, might be considered one glyph or two. And many languages use “vowel
signs” to modifying consonants to introduce vowels, such as the tilde in the Spanish word niña
(“neenya”), meaning “girl”.

TODO: typeset fl with a font that doesn’t fake that ligature with sloppy kerning…

A “script” is a set of glyphs that write a language. A “char set” is a table of integers, one for
each glyph in a script. A “code point” is one glyph’s index in that char set. Engineers say
“character” when they mean “one data element of a string”, so this book casually uses
“character” to mean either 8-bit char elements or 16-bit wchar_t elements. An “encoding” is a
way to pack a char set as a sequence of characters, all with the same bit-count. A “code page” is
an identifier to select an encoding. A “glossary” is a list of useful phrases translated into two or
more languages. A “collating order” sorts a cultures’ glyphs so readers can find things in lists

by name. A “locale” is a culture’s script, char set, encoding, collating order, glossary, icons,
colors, sounds, formats, and layouts, all bundled into a seamless GUI experience.

To internationalize, enable the narrowest set of scripts and glossaries that address
immediate business needs.

Teams may need to prepare code for glossaries scheduled to become available within a few
iterations. Ideally, adding a new locale should require only authoring, not reprogramming. New
locales should reside in pluggable modules, so adding them requires no changes to the core
source code. The application should be ready for any combination of glossaries and scripts,
within business’s short-term goals.

If the business side will only target a certain range of locales, only prepare the code for their
kinds of encodings; no more. To target only one range of cultures, such as Western Europe,
localize to two glossaries within one script, such as English and Spanish. When other nearby
locales, such as Dutch or French, become available, they should plug-and-play. (And remember
Swedish has a slightly different collating order!)

If business’s short-term goals specify only languages within one script, such as English and
Spanish, code must not prepare for locales with different scripts, such as Manchu or Sylheti. Do
not write speculative code that “might” work with other scripts’ encodings, to anticipate a
distant future when your leaders request them. Code abilities that stakeholders won’t pay
attention to add risk. In our driving metaphor, the project now drives fast in a direction the
drivers are not looking.

To target the whole world, before getting all its glossaries, localize to at least 4 scripts,
including a right-to-left script and an ideographic one.

Right-to-left scripts require Bi-Directional communication support (BiDi), so embedded
left-to-right verbiage “flows” correctly within the right-to-left text. Ideographs overflow naïvely
formatted, terse English resource templates (like mine in the last Case Study). To avoid
speculation, one should at least localize to enough different kinds of scripts to fully vet the
locale, encoding, and display functions’ abilities.

Finally, if the business plan requires only one locale, then you lack the mandate to localize.
Hard-code a single locale. Only prepare for the future with cheap and foolproof systems, such
as TEXT() or LoadString(). You aren’t going to need the extra effort and risk of more
complex facilities, like preemptive calls to WideCharToMultiByte(). Test-First Programming
teaches us the risk of speculative code by lowering many other risks so it sticks out. Bugs hide
in code written without immediate tests, reviews, or releases. When new features attempt to use
this unproven code, its bugs bite, and lead to those long arduous bug-hunts of the bad old days.

Do the simplest thing that could possibly work.

Some Agile literature softens that advice to “Consider the simplest thing…” That verbiage
denies live source code the opportunity to experience the simplest thing, if you can find it.
Seeking simplicity in a maze of absurdly complex systems, such as locales, requires capturing
that simple thing, when found. Don’t “consider” it, DO it!

Write simple code with lots of tests, and keep it easy to refactor and refeaturize. If your
application then becomes successful enough to deliver outside your initial target cultures, and if
you scrupulously put all strings into the Representation Layer and unified all their duplications,
then you will find the task of collecting strings and moving them into pluggable string tables
relatively easy.

For our narration, I picked a single target locale with sufficient challenges. Your project, on
your platform, will require many more tests than this project can present.

Escalate any mysterious display bugs into tests that constrain your
platform’s fonts, code pages, and encodings.

Fonts resist tests. GDI primitives, such as TextOut(), cannot report if they drew a �
“Missing Character Glyph”. After this little project, we will concoct a way to detect those
without visual review.

TODO: PDF is squelching the [] dead spot. Please ensure one shows up in print.

Localizing to स�स� त
Sanskrit is an ancient and living language occupying the same roles in Southern Asia as

Latin occupies in Southern Europe. We now tackle a fictitious user story “Localize to Sanskrit”,
and in exchange for some technical challenges, it returns impressive visual results.

TODO is there a latent skateboard in here?

TODO kvetch about the Winword grammar checker wants Western Europe but not
Southern Asia with a caps…

Locale Skins
Our first step authors a new locale into our RC file. Copy the IDD_PROJECT DIALOGEX and

paste it at the bottom of the RC file. Then declare a different locale above it, and put an
experimental change into it:

 LANGUAGE LANG_SANSKRIT, SUBLANG_DEFAULT

 IDD_PROJECT DIALOGEX 0, 0, 294, 122
 STYLE DS_SETFONT | DS_MODALFRAME | DS_FIXEDSYS | WS_POPUP |
 WS_CAPTION | WS_SYSMENU
 CAPTION "Snoopy"
 FONT 8, "MS Shell Dlg", 400, 0, 0x1
 BEGIN

…
 END

Resource segments follow a top-level structure of locales, with resource definitions—
menus, dialogs, accelerators, etc.—duplicated inside each locale. (This kind of duplication is
not as odious as duplicated definitions of behavior; most resources only contain definitions of
authorable esthetics and structure. We will eventually observe the need to author new controls
twice, and our test rig will help remind us.)

WinXP processes inherit their default locale from Registry settings controlled by the
Desktop Control Panel’s Regional and Language Options applet. Our tests must not require
manual intervention, including twiddling that applet or rebooting. While our Sanskrit skin
develops, no bugs must get under our English skin.

TODO So lstrcmpW() is an example of a technique, close to the application, that accurately
simulates looking at a GUI.

This test suite adjusts the behavior of TestDialog (using the Abstract Template Pattern,
again), to call SetThreadLocale(). That overrides the Control Panel and configures the
current thread so any future resource fetches seek the Sanskrit skin first. The only Sanskrit-
specific resource is our new IDD_PROJECT. Any other fetches shall default back to the English
skin.

 struct
 TestSanskrit: virtual TestDialog
 {

 void
 setUp()
 {
 WORD sanskrit(MAKELANGID(LANG_SANSKRIT, SUBLANG_DEFAULT));
 LCID lcid(MAKELCID(sanskrit, SORT_DEFAULT));
 ::SetThreadLocale(lcid);
 TestDialog::setUp();
 }

 void
 tearDown()
 {
 TestDialog::tearDown();
 WORD locale(MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT));
 LCID lcid(MAKELCID(locale, SORT_DEFAULT));
 ::SetThreadLocale(lcid);
 }

 };

The new suite calls back to its base class’s TestDialog::setUp() and Test-
Dialog::tearDown() methods. When they create the dialog member object, its resources
select Sanskrit. After the dialog destroys, the suite restores the locale to your desktop’s default.

Michael Kaplan, the author of Internationalization with Visual Basic, reminds us
SetThreadLocale() isn’t stable enough for production code. While tests may relax these
restrictions, industrial-strength localization efforts, on MS Windows, should separate locales
into distinct RC and DLL files, one set per target. A test suite should re-use the production code
methods that call LoadLibrary() to plug these resources in before displaying GUI objects.

This Case Study targets only a few of internationalization’s common problems, to bring
your platform’s best practices as close as a few refactors.

Here’s a temporary test using the new suite, and its result:

 TEST_(TestSanskrit, reveal)
 {
 revealFor("phlip");
 }

Even a Sanskrit acolyte checking this output could tell that “Snoopy” is not Sanskrit. (Trust
I really did the simplest thing that could possibly work!)

Any result except an easily recognized English name would raise an instant alarm.
Changing the new resource incrementally helps us write a Temporary Visual Inspection that
answers only one question: How to change a locale on the fly, without rebooting? Seeing only
one change, “Snoopy” for “Project” in the window caption, assures us the new resource
works, and the derived test suite works. Adding lots of Sanskrit would risk many different bugs,
all at the same time. All localization efforts have a high risk of trivial bugs that resist research,
and testing.

Babylon
In the beginning, there was ASCII, based on encoding the Latin alphabet, without accent

marks, into a 7-bit protocol. Early systems reserved the 8th bit for a parity check.
Then cultures with short phonetic alphabets computerized their own glyphs. Each culture

claimed the same “high-ASCII” range of the 8 bits in a byte—the ones with the 8th bit turned
on.

User interface software, to enable more than one locale, selects the “meaning” of the high-
ASCII characters by selecting a “code page”. On some hardware devices, this variable literally
selected the hardware page of a jump table to convert codes into glyphs.

Modern GUIs still use code page numbers, typically defined by the “International Standards
Organization”, or its member committees. The ISO 8859-7 encoding, for example, stores Latin
characters in their ASCII locations, and Greek characters in the high-ASCII. Internationalize a
resource file to Greek like this:

 LANGUAGE LANG_GREEK, SUBLANG_NEUTRAL
 #pragma code_page(1253)

 STRINGTABLE DISCARDABLE
 BEGIN
 IDS_WELCOME "Υποδοχή στην Ελλάδα."
 END

The quoted Greek words might appear as garbage on your desktop, in a real RC file, or in a
compiled application. On WinXP, fix this by opening the Regional and Language Options
applet, and switching the combo box labeled “Select a language to match the language version
of the non-Unicode programs you want to use” to Greek.

That user interface verbiage uses “non-Unicode” to mean the “default code page”. When a
program runs using that resource, the code page “1253” triggers the correct interpretation, as
(roughly) ISO 8859-7.

MS Windows sometimes supports more than one code page per locale. The two similar
pages, 1253 and ISO 8859-7, differ by a couple of glyphs.

Some languages require more than 127 glyphs. To fit these locales within 8-bit hardware,
more complex encodings map some glyphs into more than one byte. The bytes without their 8th

bit still encode ASCII, but any byte with its 8th bit set is a member of a short sequence of
multiple bytes that require some math formula to extract their actual char set index. These
“Multiple Byte Character Sets” support locale-specific code pages for cultures from Arabia to
Vietnam.

Code page systems resist polyglot GUIs. You cannot put glyphs from different cultures into
the same string, if OS functions demand one code page per string. Code page systems resist
formatting text together from many cultures. And Win32 doesn’t support all known code pages,
making their glyphs impossible.

TODO escalate Resource File
Sanskrit shares a very popular script called द�वन
गर
 (“Devanāgarī”) with several other Asian

languages. (Watch the movie “Seven Years in Tibet” to see a big ancient document, written
with beautiful flowing Devanāgarī, explaining why Brad Pitt is not allowed in Tibet.)

Devanāgarī’s code page could have been 57002, based on the standard “Indian Script Code
for Information Interchange”. MS Windows does not support this locale-specific code page.
Accessing Devanāgarī and writing Sanskrit (or most other modern Indian languages) requires
the Mother of All Char Sets.

Unicode
ISO 10646, and the “Unicode Consortium”, maintain the complete char set of all

humanity’s glyphs. To reduce the total count, Unicode supplies many shortcuts. For example,
many fonts place glyph clusters, such as accented characters, into one glyph. Unicode usually
defines each glyph component separately, and relies on software to merge glyphs into one letter.
That rule helps Unicode not fill up with all permutations of combinations of ligating accented
modified characters.

Many letters, such as ñ, have more than one Unicode representation. Such a glyph could be
a single code point (L"\xF1"), grandfathered in from a well-established char set, or could be a
composition of two glyphs (L"n\x303"). The C languages introduce 16-bit string literals with
an L.

Text handling functions must not assume each data character is one glyph, or compare
strings using naïve character comparisons. Functions that process Unicode support commands
to merge all compositions, or expand all compositions.

The C languages support a 16-bit character type, wchar_t, and a matching wcs*() function
for every str*() function. The strcmp() function, to compare 8-bit strings, has a matching
wcscmp() function to compare 16-bit strings. These functions return 0 when their string
arguments match.

(Another point of complexity; I will persist in referring to char as 8 bit and wchar_t as 16-
bit, despite the letters of the C Standard law say they may store more bits. These rules permit
the C languages to fully exploit various hardware architectures.)

Irritatingly, documentation for wcscmp() often claims it can compare “Unicode” strings.
This Characterization Test demonstrates how that claim misleads:

 TEST_(TestCase, Hoijarvi)
 {
 std::string str("Höijärvi");
 WCHAR composed[20] = {0};

 MultiByteToWideChar(
 CP_ACP,
 MB_COMPOSITE,
 str.c_str(),
 -1,
 composed,
 sizeof composed
);
 CPPUNIT_ASSERT(0 != wcscmp(L"Höijärvi", composed));
 CPPUNIT_ASSERT(0 == wcscmp(L"Ho\x308ija\x308rvi", composed));
 CPPUNIT_ASSERT(0 == lstrcmpW(L"Höijärvi", composed));

 CPPUNIT_ASSERT_EQUAL
 (
 CSTR_EQUAL,
 CompareStringW
 (
 LOCALE_USER_DEFAULT,
 NORM_IGNORECASE,
 L"höijärvi", -1,
 composed, -1
)
);
 }

The test starts with an 8-bit string, "Höijärvi", expressed in my editor’s code page, ISO
8859-1, also known as Latin 1. Then MultiByteToWideChar() converts it into a Unicode
string with all glyphs decomposed into their constituents.

The first assertion reveals that wcscmp() compares raw characters, and thinks "ö" differs
from "o\x308", where \x308 is the COMBINING DIAERESIS code point.

The second assertion proves the exact bits inside composed contain primitive o and a
glyphs followed by combining diæreses.

This assertion…

 CPPUNIT_ASSERT(0 == lstrcmpW(L"Höijärvi", composed));

…reveals the MS Windows function lstrcmpW() correctly matches glyphs, not their
constituent characters.

The long assertion with CompareStringW() demonstrates how to augment lstrcmpW()’s
internal behavior with more complex arguments.

Unicode Transformation Format
wchar_t cannot hold all glyphs equally, each at their raw Unicode index. Despite

Unicode’s careful paucity, human creativity has spawned more than 65,535 code points.
Whatever the size of your characters, you must store Unicode using its own kind of Multiple
Byte Character Set.

UTF converts raw Unicode to encodings within characters of fixed bit widths. UTF-7,
UTF-8, UTF-16, UTF-32, all may store any glyph in Unicode, including those above the
0xFFFF mark.

MS Windows, roughly speaking, represents UTF-8 as a code page among many. However,
roughly speaking again, when an application compiles with the _UNICODE flag turned on, and
executes on a version of Windows derived from WinNT, it obeys UTF-16 as a code page,
regardless of locale.

Because a _UNICODE-enabled application can efficiently use UTF-16 to store a glyph from
any culture, such applications needn’t link their locales to specific code pages. They can
manipulate strings containing any glyph. In this mode, all glyphs are created equal.

_UNICODE

Resource files that use UTF-8 configure their 8-bit code pages with #pragma code_page
(#). When a resource file saves in UTF-16 format, the resource compiler, rc.exe, interprets
RC files stored in UTF-16 text format as a global code page covering all locales. Before tossing

स�स� त into our resource files, our program needs a “refactor” to use this global code page.
Switch Project → Project Properties → General → Character Set to “Use Unicode

Character Set”. That turns on the compilation conditions UNICODE and _UNICODE. Recompile,
and get a zillion trivial syntax errors.

You might want to integrate before those changes, to create a roll-back point if something
goes wrong.

When CString sees the new _UNICODE flag, the XCHAR inside it changes from an 8-bit CHAR
to a 16-bit WCHAR. That breaks typesafety with all characters and strings that use an 8-bit char.
Fix many of these errors by adding the infamous TEXT() macro, and by using the Wide version
of our test macros. Any string literal that interacts with CStrings needs this treatment:

 TEST_(TestDialog, changeName)
 {
 m_aDlg.SetDlgItemText(IDC_EDIT_FIRST_NAME, TEXT("Krazy"));
 m_aDlg.SetDlgItemText(IDC_EDIT_LAST_NAME, TEXT("Kat"));
 CustomerAddress &aCA = m_aDlg.getCustomerAddress();
 m_aDlg.saveXML();

 CPPUNIT_ASSERT_EQUAL_W(TEXT("Krazy"),
 aCA.get(TEXT("first_name")));

 CPPUNIT_ASSERT_EQUAL_W(TEXT("Kat"),
 aCA.get(TEXT("last_name")));
 }

This project used no unnecessary typecasts. A stray (LPCTSTR) typecast in the wrong place
would have spelled disaster, because the T converts to a W under _UNICODE. (LPCWSTR)"Krazy"
does not convert “Krazy” to 16-bit characters; it only forces the compiler to disregard the
“Krazy” characters’ true type. C++ permits easy typecasts that can lead to undefined behavior.

Using types safely, without typecasts, permits the compiler’s syntax errors to navigate to
each simple change; typically lines with string literals like these, that need TEXT() macro calls:

 aDCmeta.Create(aDC, TEXT("sample.emf"), &rc, TEXT("test"));

Lines that use _bstr_t won’t need many changes, because its methods overload for
both wide and narrow strings. And some few CStrings should remain narrow. They
could convert to CStringA, but we will use std::string for no reason:

 std::string
 readFile(char const * fileName)
 {
 std::string contents;
 std::ifstream in(fileName);
 char ch;
 while (in.get(ch)) contents += ch;
 return contents;
 }

And the assertions need a new, type-safe stream insertion operator:

 inline std::wostream &
 operator<<(std::wostream &o, CStringW const &str)
 {
 CString copy(str);
 if (str.GetLength()) o << copy.GetBuffer(0);
 return o;
 }

When you make all these changes, if your project gets stuck, switch _UNICODE off, and run
all the tests. If they fail, erase your source and check out the latest version from your version
controller. Then read Developing International Software by Dr. International, and apply the 9
step procedure entitled “Migration to Unicode”. It provides many more opportunities for all
your tests to pass. But the book does not specify “run all your tests now”, after each step.
Probably just an oversight by the author.

Clean code accepts major, invasive changes gracefully & incrementally.

When legacy projects suffer during internationalization, they reveal their own hidden cruft.
Don’t blame the messenger.

Spiderman
Our current source code started, two Case Studies ago, with a simple test rig and a plain

dialog. Then our tests prepared for localization by deriving a new suite from TestDialog and
switching its locale to Sanskrit. Then our production code prepared for localization by turning
on the Unicode system. We are still not ready to localize. We have not yet determined if we
could recognize a garbage-in-garbage-out situation if we saw one. Sanskrit is Greek to many
developers. Test-First Programming relies on developers who frequently question their own
tests’ validity.

Our next step changes our window’s caption from “Snoopy” into something written in
simple phonetic Devanāgarī. Engineers learn their project’s domain as they write features, and
they learn enough of their target languages, as they internationalize, to support brief visual
inspections. Phonetic languages make converting words to sounds easy, so start your learning
here.

Open your Web browser, and hit your target locale’s BBC web site. Devanāgarī appears on
the Hindi skin of BBC News. Seek cheerful news. On some days, only advertisements or movie

reviews qualify. Copy sample words out, such as स
इडरम �न, and paste them into Notepad. (Both
the BBC News Websites, and the lowly MS Windows Notepad.exe program, provide

exemplary internationalization, so learn to leverage both.) Learn to read the characters you
copied, by translating them, or decoding their phonemes. Write down the translation for later
comparison.

Save the sample words as sample.txt, with the “Unicode big endian” encoding. Apply a
program that converts binary files to hexadecimal to sample.txt:

 Addr 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 2 4 6 8 A C E
-------- ---- ---- ---- ---- ---- ---- ---- ---- ----------------
00000000 feff 0938 094d 092a 093e 0907 0921 0930 ~..8.M.*.>...!.0
00000010 092e 0948 0928 ...H.(

The “Byte Order Mark”, FeFF, is one of a few “Magic Numbers” that trigger Unicode
parsing for text files. Convert all the codes after that BOM into a wide string literal:

L"\x0938\x094D\x092A\x093E\x0907\x0921\x0930\x092E\x0948\x0928"

We did all that to avoid pasting non-ASCII directly into program source. The Visual Studio
IDE accepts literal 16-bit Unicode characters, if you save their files as Unicode. This Case
Study illustrates doing these things the hard way, because sometimes programmers must.

Now write a test that demands our window’s caption contains the text sample:

 TEST_(TestSanskrit, reveal)
 {

 CStringW caption;
 m_aDlg.GetWindowText(caption);

 CStringW expect =
L"\x0938\x094D\x092A\x093E\x0907\x0921\x0930\x092E\x0948\x0928";

 CPPUNIT_ASSERT_EQUAL(0, lstrcmpW(expect, caption));
 revealFor("phlip");
 }

Note that big string does not use the TEXT() macro. The width of its characters is not
optional.

There are two ways to pass that test. Either paste raw Devanāgarī directly into your
resource file, or paste the escaped codes. Linguists naturally prefer the first way, and
programmers must also learn the second, so I commented the first way out:

 LANGUAGE LANG_SANSKRIT, SUBLANG_DEFAULT

 IDD_PROJECT DIALOGEX 0, 0, 294, 122
 STYLE DS_SETFONT | DS_MODALFRAME | DS_FIXEDSYS | WS_POPUP |
WS_CAPTION |
 WS_SYSMENU

 //CAPTION "स
इडरम �न"

 CAPTION
L"\x0938\x094D\x092A\x093E\x0907\x0921\x0930\x092E\x0948\x0928"

 FONT 16, "MS Shell Dlg", 400, 0, 0x1

 BEGIN

…

 END

The next step switches the resource to the correct code page. From the file Project.rc,
select File → Advanced Save Options → Unicode – Codepage 1200. The file will declare itself
modified. Save it and run all the tests.

The font "MS Shell Dlg" collates glyphs from many similar fonts, to present a globalized
super-font. Without it, our project would need a custom font.

I changed my Desktop’s Display Properties to make the title bar large, and not bold, so we
can see the details. Phonetically, we have:

• स spa

• ा
 raises the a toward i

• इ ee

• ड d

• र ar

• म m

• ा� adds ai

• न n

Note the ligature between स sa and प pa, forming स spa. That ligature suppressed the

default a sound in स sa. The little ा� things are accent marks decomposed from their target
glyphs. The dotted circle represents their missing target.

Assemble those phonemes to reveal the name of a mythical creature who is half human,
half arachnid.

Glossaries
This has been a Temporary Visual Inspection to ensure we can localize accurately. We

would be in trouble if the above experiment had revealed “The Hulk”.

We would also be in trouble if such experiments escaped our lab. Page reminds us not to
integrate aggressive experiments. Erase this change and start again with a real glossary, in
modern Sanskrit:

TODO system to marginalize the “see page” callouts?

TODO: fix the size of the bullet points

• उपकम� upakrama
H project

• न
म naama name

• क�लन
म pulanaama surname

• व
थ� १, २ viithi road 1, 2

• ग
मम ! graamam village

• ढ�श � deshe land

• स�थ$न
 sa.nhitaa code

• त
 traa save

• थवर
म viraama stop

Enter these into your resource files using one of two systems. Install a driver, or “Input
Method Editor”, that maps your keyboard onto Devanāgarī, and type the symbols into your
editor. Alternately, look each component of each letter up in a Unicode reference, and enter
their numbers as string literal escape codes. Most Unicode points form acceptable UTF-16
codes; only the ones near or above 65,535 (0xFFFF) need transformations.

Use the points to enter wide strings like these:

L"\x0935\x093F\x0930\x093E\x092E"

That spells viraama, and it illustrates a curious point about vowel signs. The first two codes
are:

• \x0935 व

• \x093F था

The symbol था i modifies the glyph to its right, but its \x093F goes after the \x0935 व v.
Unicode puts all base glyphs to the left and their modifiers on their right.

(Ironically, Devanāgarī pronounces the resulting iv as vi, so Unicode happens to match how
readers pronounce these glyphs!)

As a programmer, I need a resource file that makes all these details explicit, so we will
author the new strings into our LANG_SANSKRIT locale using only their hexadecimal
representations, not their glyphs. Your team may disagree, and put glyphs directly in resource
files. Whatever format you use, you should boost your confidence by writing a quicky test
function to convert between formats. My TEST_(TestCase, Hoijarvi) illustrated MS
Windows’s conversion functions; they should go into test fixtures for rapid review. (And thanks
to Kari Höijärvi, on the TFUI mailing list, for pointing out the effect his name has on
internationalization efforts!)

Another reason to leave Devanāgarī, specifically, out of your source code is that the

language requires some wild descenders, such as क़' . Either all these letters appear very small, or
you must set your font to very large.

TODO: Please typeset all the inline Devanāgarī at 14 point (or 2 points bigger than the Latin), if
possible without screwing up the paragraph line spacings! The tables use 16 point Devanāgarī.

Spot Checks
To spot-check this change, we will upgrade our experimental test into a real test that checks

the title bar, and the Save button. Tests like these are insufficient to constrain this entire feature;
hence this Case Study’s name.

 TEST_(TestSanskrit, caption)
 {

 CStringW caption;
 m_aDlg.GetWindowText(caption);

 CStringW expect =
 L"\x0909\x092A\x0915\x094d\x0930\x092e\x0903";

 // upkraamaH—project

 CPPUNIT_ASSERT_EQUAL(0, lstrcmpW(expect, caption));

 expect = L"\x0924\x094d\x0930\x093e"; // traa—save
 m_aDlg.GetDlgItemText(IDOK, caption);
 CPPUNIT_ASSERT_EQUAL(0, lstrcmpW(expect, caption));

 revealFor("phlip");

 }

If your team needs glyphs in resource files, you must use your conversion program to read
resource strings and reveal their hex codes to write such tests. I pasted strings into Notepad,
saved them as “Unicode – big endian”, and ran dump.exe to output their hexadecimal values.
Then I typed all their raw codes in:

 LANGUAGE LANG_SANSKRIT, SUBLANG_DEFAULT

 IDD_PROJECT DIALOGEX 0, 0, 294, 122

 STYLE DS_SETFONT | DS_MODALFRAME | DS_FIXEDSYS …
 CAPTION L"\x0909\x092A\x0915\x094D\x0930\x092E\x0903"
 FONT 18, "MS Shell Dlg", 400, 0, 0x1

 BEGIN

 LISTBOX IDC_LIST_CUSTOMERS,5,7,79,108,LBS_SORT |
 LBS_NOINTEGRALHEIGHT |
 WS_VSCROLL | WS_TABSTOP |
 LBS_OWNERDRAWFIXED | LBS_HASSTRINGS

 RTEXT L"\x0928\x093E\x092E",IDC_STATIC, …
 EDITTEXT IDC_EDIT_FIRST_NAME, …
 RTEXT L"\x0915\x0941\x0932\x0928\x093E\x092E ", …
 EDITTEXT IDC_EDIT_LAST_NAME, …
 RTEXT L"\x0935\x0940\x0925\x093F\x0967",IDC_STATIC, …
 EDITTEXT IDC_EDIT_ADDRESS_1, …
 RTEXT L"\x0935\x0940\x0925\x093F\x0968 ", …
 EDITTEXT IDC_EDIT_ADDRESS_2, …
 RTEXT L"\x0917\x094D\x0930\x093E\x092E\x092E\x094D", …
 EDITTEXT IDC_EDIT_CITY, …
 RTEXT L"\x0922\x0947\x0936\x0947 ", …
 COMBOBOX IDC_COMBO_STATE, …
 RTEXT L"\x0938\x0902\x0939\x093F\x0928\x093E", …
 EDITTEXT IDC_EDIT_ZIP, …
 DEFPUSHBUTTON L"\x0924\x094D\x0930\x093E ",IDOK, …
 PUSHBUTTON L"\x0935\x093F\x0930\x093E\x092E ",IDCANCEL, …
 END

The new skin reveals a display bug in the list box:

I switched the font size to 18 to show details. The bit LBS_OWNERDRAWFIXED assumes the
font size 8. Fix this inside OnInitDialog(). This (authored) code selects the current font,
extracts its metrics, adds a little fudge factor, and configures the list box to use a height based
on the current skin:

 LRESULT
 ProjectDlg::OnInitDialog(UINT, WPARAM, LPARAM, BOOL &)
 {
 CListBox aList = GetDlgItem(IDC_LIST_CUSTOMERS);

 …

 if (LANG_SANSKRIT == PRIMARYLANGID(::GetThreadLocale()))
 {
 if (!m_fontSanskrit.m_hFont)
 m_fontSanskrit.
 CreatePointFont(180, TEXT("Sanskrit 2003"));

 CClientDC aDC(this->m_hWnd);

 CFontHandle oldFont = aDC.SelectFont(m_fontSanskrit);
 TEXTMETRIC metrics;
 aDC.GetTextMetrics(&metrics);
 aDC.SelectFont(oldFont);
 aList.SetItemHeight(0, metrics.tmHeight);

 CWindow first = GetWindow(GW_CHILD);
 CWindow next = first;

 do {
 next.SetFont(m_fontSanskrit);
 next = next.GetWindow(GW_HWNDNEXT);
 } while (next.m_hWnd);
 }
 return 0;
 }

For one last flourish, I slipped in a beautiful font called “Sanskrit 2003”, by the studious
Omkarananda Ashram Himalayas. I could have added it to the dialog resource; instead I loop
through each dialog item, and push the new font into it.

The final product (enlarged to show texture):

Our small tests are sufficient for TFP and refactoring. However, even a test that compared
every string would not be sufficient for an entire localization project. I copied the same hex

codes into both the test and the resource file. If I encoded a mistake, such as “था व”, to me it
would look like a harmless “\x093F\x0935”. I would then copy it into both places, and the test
would reinforce the mistake, not catch it.

Missing Character Glyphs
Your linguists cannot test-first every glyph, and if you don’t understand the glyphs then you

shouldn’t test-first them. To constrain these risks, acceptance tests can scan all the text in your
application and perform general sanity checks. Languages exist to be parsed. A high-content
system like a Web site should use a grammar checker and spelling checker for each language.
Engineers should support linguists, and refactoring, by adding tests that perform simple checks
on content.

TODO: PDF is squelching the [] dead spot. Please ensure one shows up in print.
In theory, checking that no window displays a Missing Character Glyph, � , should be

simple. The low-level methods that might produce this glyph, such as TextOut(), know they
drew it. But they won’t tell the programmer. Put another way, the GDI layer has the ability to
Set a string containing potential text, but misses the ability to Get the information that the string
was wrong. GDI painted this information on the screen, then threw it away.

We could address this by opening our font files, decoding them, finding all their glyphs
(and their ligatures, modifiers, etc.), summating all this information, and comparing it to our
text resources. That effort would duplicate the activities of the font manager inside GDI.

In a pinch, one can borrow methods from unused libraries to boost testage. Libraries are
easier to add to test code than production code. The library “Uniscribe” supports editors that

enable users to write partial and then complete ligating glyphs, no matter what their
intermediate shapes. The library manipulates every glyph in a font, so tests on such glyphs
might borrow its support utilities.

This book must neglect Uniscribe’s core features, following the business assumption that
your users already have “Input Method Editors” for their home locales. If you need a Uniscribe-
enabled GUI layer, start with Temporary Interactive Tests that activate localized keyboard
layouts.

This test shows Uniscribe’s ScribeGetCMap() using our test dialog’s device context and
font to pass a healthy string, and fail an unhealthy one:

 #include "Usp10.h"

 // tell linker to get Uniscribe library
 #pragma comment(lib, "Usp10.lib")

 bool
 codePointsAreHealthy(CClientDC &aDC, WCHAR * codePoints)
 {
 static SCRIPT_CACHE cache = NULL;
 WORD outGlyphs[100] = {0};
 HRESULT hr;

 hr = ScriptGetCMap
 (

 aDC, // In Optional device context
 &cache, // InOut Address of Cache handle
 codePoints,
 wcslen(codePoints),

 0, // In Flags such as SGCM_RTL
 outGlyphs // Out Array of glyphs
);

 return S_OK == hr;
 }

 TEST_(TestSanskrit, ScriptGetCMap)
 {

 CListBox aList(m_aDlg.GetDlgItem(IDC_LIST_CUSTOMERS));
 CClientDC aDC(aList);
 CFontHandle font = aList.GetFont();
 aDC.SelectFont(font);

 WCHAR broke[] = L"\x0900"; // a dead code point
 CPPUNIT_ASSERT(!codePointsAreHealthy(aDC, broke));

 WCHAR vi[] = L"\x0935\x093F"; // a healthy ligature
 CPPUNIT_ASSERT(codePointsAreHealthy(aDC, vi));

 }

(Note that Uniscribe only supports Devanāgarī for MS Windows >= 2000, MS Office
>= 2000 or Internet Explorer >= 5.0.)

TODO restore the oldFont?

Now that we have the technique, we need a test that iterates through all controls, extracts
each one’s string, and checks if it contains a dead spot. Put a \x0900 or similar dead spot into
your resource files, in a label, and see if this catches it.

Because this test cycles through every control, it’s a good place to add more queries. I
slipped in a simple one, IsTextUnicode(), as an example:

 TEST_(TestSanskrit, _checkAllLabels)
 {
 CListBox aList(m_aDlg.GetDlgItem(IDC_LIST_CUSTOMERS));
 CClientDC aDC(aList);
 CFontHandle font = aList.GetFont();
 aDC.SelectFont(font);

 CWindow first = m_aDlg.GetWindow(GW_CHILD);
 CWindow next = first;

 do {
 CString text;
 next.GetWindowText(text);

 if (text.GetLength() > 2)
 {
 INT result = IS_TEXT_UNICODE_UNICODE_MASK;
 CString::XCHAR * p = text.GetBuffer(0);
 int len = text.GetLength() * sizeof *p;
 CPPUNIT_ASSERT(IsTextUnicode(p, len, &result));

 CPPUNIT_ASSERT
 (
 codePointsAreHealthy(aDC, p));
 }

 next = next.GetWindow(GW_HWNDNEXT);
 } while (next.m_hWnd);
 }

That works great—for Sanskrit. What about all the other locales?

Abstract Skin Tests
A GUI with more than one skin needs tests that cover every skin, not just the one currently

under development. Refactors and new features in one skin should not break others. Per the
practice Version with Skins (from page), concrete tests for each skin will inherit and specializes
a common Abstract Test.

TODO “from” for back-citations, “on” generally for forward citations

Our TEST_() macro needs a tweak to support Abstract Tests. First we switch our latest test
to constrain English, because the base class for TestSanskrit is TestDialog. This refactor
moves the case we will abstract up the inheritance graph:

 TEST_(TestDialog, _checkAllLabels)
 {

…
 }

Now write a new macro that reuses a test case, such as _checkAllLabels, into any derived
suite, using some good old-fashioned “Diamond Inheritance”:

 #define TEST_(suite, target) \
 struct suite##target: virtual suite \
 { void runCase(); } \
 a##suite##target; \
 void suite##target::runCase()

 #define RETEST_(base, suite, target) \
 struct base##suite##target: \
 virtual suite, \
 virtual base##target { \
 void setUp() { suite::setUp(); } \
 void runCase() { base##target::runCase(); } \
 void tearDown() { suite::tearDown(); } \
 } a##base##suite##target;

…

Then express that macro with three parameters: The base class, the derived class
whose setUp() and tearDown() we need, and one base class case. The macro reuses that
case with the derived class:

 RETEST_(TestDialog, TestSanskrit, _checkAllLabels)

That change required TestSanskrit to inherit TestDialog virtually, to ensure that
suite::setUp() sets up the same m_aDlg member object as base##target::runCase() tests.

Without virtual inheritance, C++’s multiple inheritance system makes that chart into a
huge V, disconnected at the top. The TestDialogTestSanskrit_checkAllLabels object
would contain two different TestDialog sub-objects, and these would disagree which instance
of their member variable m_aDlg to test, and which to localize to Sanskrit.

TODO your test rig should also provide abstract test by some mechanism

Future extensions could create a template that abstracts setUp() and tearDown() across a
list of locales. When the time comes to conquer—oops I mean “support”—the entire world, we
should build more elaborate Abstract Tests, then declare stacks of them, one per target locale:

RETEST_(TestDialog, TestLocale< LANG_AFRIKAANS >,_checkAllLabels)
RETEST_(TestDialog, TestLocale< LANG_ALBANIAN >,_checkAllLabels)
RETEST_(TestDialog, TestLocale< LANG_ARABIC >,_checkAllLabels)
RETEST_(TestDialog, TestLocale< LANG_ARMENIAN >,_checkAllLabels)
RETEST_(TestDialog, TestLocale< LANG_ASSAMESE >,_checkAllLabels)
RETEST_(TestDialog, TestLocale< LANG_AZERI >,_checkAllLabels)
RETEST_(TestDialog, TestLocale< LANG_BASQUE >,_checkAllLabels)

…

Their test cases should sweep each window and control, for each locale, to check things
like overflowing fields, missing hotkeys, etc. Only perform such research as your team appears
to need it. (And notice I localized to Sanskrit without adding hotkeys to each label. Only a
linguist proficient in a culture’s keyboarding practices can assist that usability goal.)

This Case Study pushed the limits of the Query Visual Appearance Principle. Nobody
should spend all their days researching dark dusty corners of GDI. No trickery in the graphics
drivers will rescue usability assessments from repeated painstaking manual review.

TODO query visual appeances ??

This Case Study will add one more feature before making manual review very easy.
Simultaneously automating the review of locales and animations separates the acolytes from the

ग �रन ! .

Copyright © Pearson Publishing and Phlip

